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Experimental determination of Ginzburg-Landau parameters for reaction-diffusion systems
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We describe an experimental method to determine the parameters of the complex Ginzburg-Landau
(CGL) equation for chemical reaction-diffusion systems, solely using measurements on homogeneous sys-
tems together with diffusion constants. The necessary eigenvectors and growth rate of oscillations from
an unstable focus are obtained experimentally. The method applies to systems of any number of reacting
species and allows predictions of wave properties of real chemical systems. With more than two
diffusing species the diffusion parameter may have a negative real part thus requiring corrections to the

CGL equation.

PACS number(s): 05.70.Ln, 82.40.Bj, 82.20.Mj, 82.20.Wt

The complex Ginzburg-Landau equation has been ex-
tensively used for studying waves such as spirals [1,2] and
turbulence [3-5] in the chemical and biological reaction
diffusion systems [6,7] as well as in hydrodynamics [8]. It
describes the slow variation in space and time of the am-
plitude of local oscillators. For systems with a supercriti-
cal Hopf bifurcation (in the corresponding homogeneous
system), the equation can be systematically derived by ex-
pansion to lowest nontrivial order in a small parameter
related to the distance (in parameter space) from the bi-
furcation [3].

The complex Ginzburg-Landau equation is thus
universal for classes of phenomena in diverse fields, and
results obtained in one field may be useful for understand-
ing corresponding phenomena in other fields and may
stimulate further research there. Chemical systems have
a large number of parameters that are easily controlled
experimentally. Consequently, it is possible to design
chemical systems with particularly interesting combina-
tions of parameters. Wave phenomena observed in chem-
ical and biological systems under such conditions are of
interest in their own right as well as for studies of analo-
gous physical phenomena.

Most treatments of reaction diffusion systems have
been limited to cases with one or two diffusive chemical
species. The complex Ginzburg-Landau equation applies
to more general chemical systems, typically having a
state space of high dimensions which it effectively
reduces to two. The relation to actual chemical systems,
although known theoretically [3], has never been estab-
lished experimentally. It is the purpose of this paper to
show how this can be done: we show how the parameters
of the complex Ginzburg-Landau equation for space-
dependent systems can be determined from measure-
ments on the corresponding homogeneous (well-stirred)
system together with diffusion constants of the involved
chemical species (the diffusion matrix). The parameters
determined experimentally by the method apply to reac-
tions in open or closed spatial reactors provided the com-
plex Ginzburg-Landau equation is applicable to the sys-
tem to a sufficiently good approximation.

Consider a homogeneous chemical reaction system
with rate equation dc/dt=f(c;u), with a stationary
point cy(u) which is stable for u <0 and becomes unsta-
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ble by a supercritical Hopf bifurcation at u=0. The
Jacobi matrix J(c;u) at the bifurcation point Jy=J(c;0)
has a pair of purely imaginary eigenvalues. The normal-
ized eigenvectors are defined by Jyui=tioguy,
ut-Jo=tiout, ut-u, =1, and uF-u; =0.

If the system is unstirred, the concentration vector
c(x,t;u) is governed by a reaction-diffusion equation

. o2
3 (c;u)+D-Vc,

in which D is the diffusion matrix. For u=e¢?> 0 close to
a Hopf bifurcation the motion in the plane of the ¢ space
defined by u, is best described in terms of a long range
and slowly varying amplitude, W(s,7), depending on
scaled position and time variables s=ex and T=¢€t,
defined to lowest orders in € as

c(x,t;u)=cyt+ {eW(s,T)explioyt Jus +c.c.} ,

in which c.c. denotes the complex conjugate of the first
term in brackets. The complex amplitude W (s, 7), which
does not depend explicitly on u, satisfies the complex
Ginzburg-Landau equation [3]
%—W=A1W~gIW|2W+dV§W . (1)
-
The parameters are defined in terms of D and an ex-
pansion of f in u=c—c, and g,

f(c;u)=Jd(cou)-u+M(cy;u)uu+0 ,

Jlecgu)=Jdo+ud+ -+ 5 Mlcgu)=My+uM;+ --- |

in which the term O is zero for bimolecular kinetics and
can thus be ignored for real chemical systems. We have
used a dyadic notation in which M:uu is a vector for
which the ith component is M, u;u; with summation
over j and k understood. The parameter g is defined in

terms of M, (see Ref. [3]) whereas A,=0c;+iw,
=ut-J;-ug, and
d=d'+id”"=u"-Du, . (2)

If d’>0 and o,>0, we may introduce reduced vari-
ables T, S, and 4 through [3] 7=T /0, s=[d'/o,]'/?S,
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and W=[o,/|g’| ]Vzexp(ia)lr)A. The Ginzburg-Landau
equation is then transformed to the simpler form

%ZA—(I—Ha)IAPA +(1+ip)vi4 3)
in terms of the two real parameters a=g'’ /g’ and
p=d"/d'.

The left eigenvector u™ of the Jacobi matrix at a super-
critical Hopf bifurcation can be obtained directly from
quenching experiments [9-11]. Sometimes the right
eigenvector u . can be obtained from the experimental
left eigenvectors by using the biorthogonality relations
[12] between left and right eigenvectors. In general, it
may be determined from models of the homogeneous re-
action systems systematically fitted to the quenching data
at the supercritical Hopf bifurcation using an efficient
method in terms of “extreme currents” [13].

We shall briefly indicate how u™ is obtained: it is a
vector in the dual space of the space of concentrations of
the species that are involved in the oscillations. The sth
component of u™ is essentially the reciprocal of a quanti-
ty we have called a quenching amplitude f; which is ob-
tained experimentally as follows [9-11].

The small limit-cycle oscillations that exist just beyond
the bifurcation, can be stopped by addition of species s if
the addition shifts the instantaneous state of the system
to some point on the stable manifold of the saddle focus
(the fixed point that became unstable at the Hopf bifurca-
tion), see Fig. 2 of Ref. [11].

If the change of concentration of species s by the addi-
tion is g, (before reactions have taken place) and the
phase at which the successful quenching was made is ¢,,
then f; is by definition f;= —gq exp(i¢,). The sth com-
ponent of u™ is thus

)= —explig,)/q; . @)

Similarly, the sth component of the right eigenvector u
can be expressed in terms of the amplitudes a, and phases
6, of the oscillations of species s as [11]

(uy),=a,exp(—if,)/2 . (5)

(u

The diffusion parameter d and the ratio 3 are deter-
mined by Eq. (2). Consider, e.g., a three-dimensional sys-
tem with species denoted by x, y, and z. For a diagonal
matrix, D=diag(D,, D,, D,), we obtain from Egs. (4) and
(5)

d=v,D,+v,D,+v,D,, (6)
in which (for s =x, y, or 2)

—_— ! . 1
v, =0, +ivg

=(ut),(uy), = —expli(d,—6,)] .
s +7/s 2qs s s

The generalization to arbitrary dimension is straightfor-
ward.

From quenching experiments with the Belousov-
Zhabotinsky reaction [10] we find quenching concentra-
tions g, and phases ¢, (Ref. [10], Table I)] and recon-

TABLE 1. Experimental coefficients for the expression (6)
giving the diffusion parameter d for the Belousov-Zhabotinsky
reaction at a Hopf bifurcation [10].

’

s U v,
HBrO, 0.45 —0.024
Br™ —0.158 —0.90
Cett 0.72 0.92

structed oscillation amplitudes a; and phases 6, (Ref.
[10], Table II). From Eq. (7) we then obtain the
coefficients v given in Table I. Here x, y, and z refer to
HBrO,, Br~, and Ce*!, respectively. If we use
D,=1.6X10"° cm?/s for diffusion in water from stan-
dard tables and estimate D,=1X10"° cm~%/s and
D,=0.6X10"° cm?/s we get d=(0.6—i0.9)X 107>
cm?/s. This gives the ratio 8= —1.4.

It is interesting to note that the real part of d would be-
come negative if D, were sufficiently large, namely, if

D,>2.8D,+4.6D, . 8)

This inequality will hardly be satisfied for any realistic es-
timates of D, and D,, but negative values of d’ cannot be
excluded for other Hopf bifurcation points where the
coefficients v, will be different.

The important point is, however, that the diffusion
constants and the eigenvectors are completely unrelated
so negative d’ exists and must be expected to occur com-
monly in chemical reaction diffusion systems. However,
such systems are still to be discovered. When d’ <0 the
solutions to the complex Ginzburg-Landau equation be-
come unstable, and higher-order corrections must be in-
cluded in order to model the system in a similar way.

The nonlinearity parameter g and the ratio a can be
determined from the recorded time series of a quenching
experiment [10,14]. For a homogeneous (well-stirred)
system the kinetic equations correspond to a Ginzburg-

Landau equation with D=o. By defining
W (r)=R (7)exp[if(7)] with R and 6 real, we get [3]
dR , do "
EZU]R —8 Rs, E=a)1—-g R2 N
or in terms of the time ¢ and amplitude a =€eW,
%‘f-:aa —g’a3 , 9)
— dg — )
a)(a;,u)—a)o-f-gt——wo-i-,uwl—g a®, (10)

in which o=puo ;. The limit cycle is @ =a, for which
da /dt =0,

a,=(o/g")"?. (11)

The slope of the tangent to the envelope of the time
series at the half-amplitude point, a =a, /2, is [from Eq.
9]
da

ot =ga,/2—g'al/8 ,

S127
/ a=a /2

see Fig. 1. Hence,
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g’=(%)s1 ” /as3 X (12) state of the reaction mixture in a continuous-flow stirred

tank reactor at the conditions used to determine the pa-

From Eq. (10) we get rameters. We believe the parameters apply to more gen-

2" =[0(0;)—ola,;un)] /a}E Aw/a Sz , (13) zll'latls ;g;tiile(;(ér;;ljglggl:ﬁizlga: (ii:.scu5510n of that question is

so As an immediate application of experimentally deter-

mined Ginzburg-Landau parameters, we indicate how the

a=g"/g'=(3/8)Awa, /s, . (14) asymptotic wave length A of spiral waves can be ob-

tained. From the analytic and numerical spiral wave

From Fig. 1(a) for the cerium-catalyzed Belousov-  ojutions to the complex Ginzburg-Landau equation ob-
Zhabotinsky (BZ) system [10] we find g'  {ained by Hagan [1],

=9X10"° M72s7! and estimate g"'~3X10'"° M~2s" |,
so a=0.3. (The unit M denotes mol/dm>.) The results
for g'’ and «a are rather uncertain. From Fig. 1(b) for the
Briggs-Rauscher system [14] a more accurate determina-
tion of « is possible: we find a=1.4 for that system. The
parameters d and 3 can also be obtained for the Briggs-
Rauscher system via optimized models using the method
of Ref. [13], but we have no results yet. The specific re-
sults quoted in this paper apply to the Hopf bifurcation
points given in Refs. [10] and [14].

When experimental parameters are used to describe a
closed reaction diffusion system the best initial conditions
for the closed system are obtained by preparing the initial
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-2 T I T T

T T
0 1.0 2.0 3.0 4.0 5.0 6.0
time (10%s)
2 1 1 1 1
(b)
.1 L
o
X
<
= 0 - -
X
=
-
_2 1 T T T T
0 0.2 0.4 0.6 0.8 1.0
time (10% s)

FIG. 1. The nonlinearity parameter g =g’-ig’’ and the ratio
a=g" /g’ for the Ginzburg-Landau equation are obtained from
a recorded time series of a quenching experiment for (a) the
Belousov-Zhabotinsky reaction [10] and (b) the Briggs-Rauscher
reaction [14] using Egs. (12)-(14). For each curve the tangent
to the envelope at the half-amplitude point is shown. Its slope
s1,2 is used to determine g’ whereas g’’ is determined from the
frequencies of the (infinitesimally) small oscillations and the
limit-cycle oscillations. The results for a are a~0.2 (a) and
a=0.4 (b).

we find the wavelength as
A=(ld|/0)V?27/k in which |d| is the modulus of the
complex diffusion parameter and k is a scaled asymptotic
wave number defined by Hagan. (It should be noted that
Hagan’s scalings differ slightly from the ones used here.)
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FIG. 2. Hopf bifurcation diagram and Ginzburg-Landau pa-
rameters a and f3, calculated along the bifurcation curve for the
standard Oregonator model [17] of the BZ reaction. The model
is defined by reactions (A1)—(A5) in the Appendix to Ref. [11]
with rate constants k;=1.6 M~ s™!, k,=2.5X10° M~2 s},
k;=33 M7 257! k,=3000 M7 's™!, ks;=0.33 s”!, and
f=0.30, according to Field and Fosterling [18]. The bifurca-
tion parameters are the concentrations of H* and BrO;~. The
solid (dashed) parts of the curves represent supercritical (sub-
critical) bifurcations.
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The dimensionless wave number k is obtained from
Hagan’s Fig. 5 with his parameter g replaced by Eq. (B6)
of his Appendix B, using ¢ =—a and his parameter z
defined by tan(z)=p. From our estimated a and S for
the BZ system, we get k =0.3. By using the complex
diffusion parameter d together with 0 =0.0156 s~! ob-
tained from our Fig. 1(a) we predict the result A=6 mm.
Thus, at the distance from the Hopf bifurcation studied
in the experiments [10], Ginzburg-Landau spirals should
be observable in ordinary laboratory experiments.

The parameter g’ is closely related to the Floquet ex-
ponent of the limit cycle. It is positive on the supercriti-
cal branch of the Hopf bifurcation curve and vanishes at
a transition to subcriticality [15]. Since g'’ is regular, a
diverges as the transition point is approached. This
means that if g'’ is positive the Ginzburg-Landau equa-
tion may allow turbulent solutions [5] sufficiently close to
the transition, where, however, a quintic correction term
may be needed for some reaction diffusion systems [16].

The complex Ginzburg-Landau equation may also be
useful in computational modeling of a real chemical sys-
tem if its reaction mechanism is known or assumed. Such

mechanisms may involve dozens of active chemical
species, and the study of waves and turbulence by numer-
ical integration of the reaction-diffusion equations is
beyond the capacity of existing computers. Near a super-
critical Hopf bifurcation such systems may be treated by
a Ginzburg-Landau equation with parameters that can be
easily calculated from the kinetics [3].

As an illustrative example we show in Fig. 2 a Hopf bi-
furcation curve together with the parameters a and S
along the curve, calculated from the Oregonator model
[17] of the Belousov-Zhabotinsky reaction. The Orego-
nator has successfully been used to describe oscillations
in the BZ system. The results in Fig. 2 indicate the con-
siderable range of a and f3 accessible in chemical systems
by choice of points of operation. However, the main re-
sult of this paper is the method of determining actual
Ginzburg-Landau parameters from experiments on
specific systems.

We wish to thank P. Alstrdm, T. Bohr, and G. Dewel
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